A Plane Sweep Algorithm for the Voronoi Tessellation of the Sphere

نویسندگان

  • Xiaoyu Zheng
  • Roland Ennis
  • Gregory P. Richards
  • Peter Palffy-Muhoray
چکیده

We have extended Fortune’s sweep-line algorithm for the construction Voronoi diagrams in the plane to the surface of a sphere. Although the extension is straightforward, it requires interesting modifications. The main difference between the sweep line algorithms on plane and on the sphere is that that the beach line on the sphere is a closed curve. We have implemented this algorithm and tessellated spheres with up to one million sites. The running time for our sweep line algorithm on the sphere is O(N log N), and the storage space is O(N).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane-Sweep Incremental Algorithm: Computing Delaunay Tessellations of Large Datasets

We present the plane-sweep incremental algorithm, a hybrid approach for computing Delaunay tessellations of large point sets whose size exceeds the computer’s main memory. This approach unites the simplicity of the incremental algorithms with the comparatively low memory requirements of plane-sweep approaches. The procedure is to first sort the point set along the first principal component and ...

متن کامل

Voronoi Diagrams for Parallel Halflines in 3D

We consider the Euclidean Voronoi diagram for a set of n parallel halflines in R. A relation of this diagram to planar power diagrams is shown, and is used to analyze its geometric and topological properties. Moreover, a simple plane-sweep algorithm is given that computes the Voronoi diagram for parallel halflines at logarithmic cost per face.

متن کامل

Parallel computing 2D Voronoi diagrams using untransformed sweepcircles

Voronoi diagrams are among the most important data structures in geometric modeling. Among many efficient algorithms for computing 2D Voronoi diagrams, Fortune’s sweepline algorithm (Fortune, 1986 [5]) is popular due to its elegance and simplicity. Dehne and Klein (1987) [8] extended sweepline to sweepcircle and suggested computing a type of transformed Voronoi diagram, which is parallel in nat...

متن کامل

The geometry of circles: Voronoi diagrams, Möbius transformations, Convex Hulls, Fortune’s algorithm, the cut locus and parametrization of shapes

The geometry of circles in the plane is inextricably tied with the group of Möbius transformations, which take circles to circles. This geometry can be seen in a more symmetric after transforming the plane to the sphere, by stereographic projection. Interpretations will be discussed for Voronoi diagrams, Delaunay triangulations,etc. from this point of view. Fortune’s algorithm for constructing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011